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Abstract: Reported is synthesis of cyanines 3 (Xmax = 1033 nm in MeOH) and 4 (Xmax = 
1060 nm in MeOH) substituted with an isothiocyanato function, and a succinimidoxycarbonyl-
functionalized cyanine 10 (λ,,^ = 837 nm in MeOH) for labeling of biomolecules at amino groups. 

Introduction 

Currently, there is an increasing interest in the application of near-infrared (NIR) probes as a 

means of detection of biological macromolecules.1,2 The NIR region (700-1100 nm) offers several 

advantages over the visible spectral range (400-700 nm). First, the natural products are largely 

transparent to NIR radiation. Second, since the NIR spectral range is inherently a region of low 

interference, it is well suited for analytical techniques using high complexity samples without any 

preseparation or prepurification. In particular, very low detection limits can be achieved using NIR 

fluorescence. This is especially true for cyanine dyes that, depending on structure, show an 

extinction coefficient of up to 300,000 M"'crn1 and quantum yield of fluorescence of up to 40%.3 

Our research in the past focused on utilization of the short wavelength NIR region (700-800 nm). 

For the most part it was dictated by the availability of a commercial GaAlAs diode laser that emits 

at 785 nm. Our research group has tailored the chemistry of NIR cyanine dyes to match this output. 

This report pertains to the synthesis of new NIR cyanine dyes that absorb and fluoresce in 

the longer wavelength portion of the electromagnetic spectrum of 800-1000 nm. By moving 

detection bathochromically, the background interference from the complex matrix can be further 

reduced. The synthesis of three NIR dyes substituted with amino reactive groups is described. 

Importantly, the absorptions of the chromophores of the reagents 2 and 3 match the output of a 

commercial laser that emits at 1050 nm, and compound 10 can be used in conjunction with either of 

two commercial diode lasers with outputs at 810 nm and 830 nm. 
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Results and Discussion 

In 1992, we reported an efficient SRN1 displacement of a chloro substituent at the central 

position of indolium heptamethine cyanines by the reaction with nucleophiles that are good single-

electron donors.4 Subsequently, this reaction has become a cornerstone of a facile functionalization 

of the heptamethine cyanines by us and others.5 As part of this work we found that a similar 

treatment of benzo-fused indolium heptamethines, such as 1 (Scheme 1), provides an easy access to 

dyes that absorb beyond 800 nm. 

In the preparation of the isothiocyanato-substituted dye 3 the substrate 1 was allowed to 

react with sodium 4-aminophenoxide followed by conversion of the amino group in the resultant 

product 2 by treatment with thiophosgene. The intermediate product 2 was obtained as a single 

isomer, and this outcome is consistent with our previous observation that the rate of a similar 

reaction with sodium phenoxide is much greater than that with aniline.4 

A modified approach was used in the synthesis of 4-isothiocyanatophenylthio analog 4. 

Thus, the treatment of 1 with 4-isothiocyanatobenzenethiol gave the desired compound 4 directly. 

The isothiocyanato-substituted dyes 3 and 4 show absorption maxima in methanol at 1033 nm and 

1060 nm, respectively. In spite of their low solubility in water, they can be used as biomolecule 

labeling-reagents if used in a solution of DMSO.6 

The synthesis of a water soluble reagent 10 is outlined in Scheme 2. The enhanced aqueous 

solubility is provided by the presence of sulfonatopropyl substituents at the terminal heterocyclic 

subunits of the dye. In contrast to the isothiocyanato derivatives 3 and 4 the dye 10 contains a 

succinimido carboxylate function as an amino-reactive group. As can be seen from Scheme 2, the 

intermediate chloro-substituted dye 8 was obtained by quaternization of a l//-benz[<?]indole 5 with 

1,3-propanesultone followed by condensation of the resultant product 6 with the reagent 7. Then 

the dye 8 was allowed to react with 4-mercaptobenzoic acid to give a 4-carboxyphenylthio-

substituted derivative 9. Esterification of the carboxylic acid function in 9 by the reaction with 

disuccinimido carbonate7 gave 10. All these reactions are highly efficient and purification of all 

products 6, 8-10 does not require chromatography. The analytically pure reagent 10 shows 

absorption maximum in methanol at 837 nm. 

Currently, we are optimizing protocols for coupling of the reagents 3, 4, and 10 with the 

amino groups of proteins. Full experimental details, including quantitative characteristics of 

absorption and fluorescence under optimized solvent conditions, will be published in due course. 
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Experimental 

Dye 1 (IR-1048) was purchased from Aldrich. The 'H NMR spectra were obtained at 400 

MHz at 30 °C. The NIR spectra were recorded in methanol solutions. All new compounds gave 

satisfactory results of elemental analysis (C, ±0.4; H, ±0.2; N, ±0.3). 

2-[4'-[(4""-Aminophenyl)oxy]-7'-(l"-butyI-6"-chloro-l",2"-dihydrobenz[ci/]indol-2"-

yIidene)-3',5'-(propane-l'",3'"-diyl)-l',3',5'-heptatrien-l'-yl]-l-butyl-6-

chlorobenz[cif]indolium tetrafluoroborate (2). A mixture of 4-aminophenol (44 mg, 0.4 mmol) 

and sodium hydride (16 mg, 0.4 mmol) in anhydrous chloroform (5 mL) was stirred for 15 min at 

23 °C under a nitrogen atmosphere and then treated with a solution of 1 (148 mg, 0.2 mmol in 

anhydrous chloroform (20 mL). After stirring for an additional 2 h at 23 °C the mixture was 

quenched with solid carbon dioxide and filtered, and the resulting solution was applied to a 

chromatography column packed with silica gel in chloroform. Elution with chloroform/methanol 

(4:1) followed by removal of the solvent on a rotary evaporator gave 2 as a purple powder; yield 47 

mg (30%); mp > 200 °C (dec); NIR Xmax 1023 nm; Ή NMR (CDC13/CD30D, 1:1) δ 1.02 (t, J = 7 

Hz, 6H), 1.47 (sext, J = 7 Hz, 4H), 1.82 (quint, J = 7 Hz, 4H), 2.18 (m, 2H), 2.90 (m, 4H), 4.16 (t, J 

= 7 Hz, 4H), 6.55 (br d, J = 14 Hz, 2H), 7.06 (d, J = 8 Hz, 2H), 7.15 (d, J = 8 Hz, 2H), 7.53 (d, J = 8 

Hz, 2H), 7.59 (d, J = 8 Hz, 2H), 7.67 (m, 4H), 8.13 (d, J = 8 Hz, 2H), 8.34 (br d, J = 14 Hz, 2H). 

2-[7'-(l"-Butyl-6"-chloro-l",2"-dihydrobenz[ci/]indol-2"-ylidene)-4'-[(4""-

isothiocyanatophenyl)oxy]-3',5'-(propane-l'",3'"-diyl)-l',3',5'-heptatrien-l'-yl]-l-butyl-6-

chlorobenz[ci/]indolium tetrafluoroborate (3). A mixture of 2 (41 mg, 0.05 mmol) and sodium 

carbonate (40 mg, 0.37 mmol) in anhydrous DMF (20 mL) was stirred under an atmosphere of 

nitrogen at 0 °C and treated dropwise with thiophosgene (20 μ ί , 0.26 mmol). After stirring for an 

additional hour at 0 °C the mixture was filtered and the solution was concentrated on a rotary 

evaporator at 50 °C. Chromatography and workup as described above gave 15 mg (40%) of 3 as a 

purple powder; mp > 200 °C (dec); IR (KBr) ν 2095 cm 1 (NCS); NIR λ ^ 1033 nm; Ή NMR 

( C D C y δ 0.94 (t, J = 7 Hz, 6H), 1.44 (m, 4H), 1.77 (m, 4H), 2.12 (m, 2H), 2.89 (m, 4H), 4.17 (m, 

4H), 6.64 (br d, J = 14 Hz, 2H), 6.98 (d, J = 8 Hz, 2H), 7.26 (m, 2H), 7.30 (d, J = 8 Hz, 2H), 7.44 (d, 

J = 8 Hz, 2H), 7.62 (m, 4H), 8.08 (d, J = 8 Hz, 2H), 8.12 (br d, J = 14 Hz, 2H). 

2-[7'-(l"-Butyl-6"-chloro-l",2"-dihydrobenz[ci/]indoI-2"-yIidene)-4'-[(4""-

isothiocyanatophenyl)thio]-3',5'-(propane-l"',3'"-diyl)-l ' ,3',5'-heptatrien-l'-yl]-l-butyI-6-

chlorobenzindolium tetrafluoroborate (4). A solution of 1 (81 mg, 0.11 mmol) and 4-

isothiocyanatobenzenethiol8 (92 mg, 0.55 mmol) in anhydrous DMF (10 mL) was allowed to stand 

under a nitrogen atmosphere at 23 °C for 6 h and was then treated with ether (30 mL). The resulting 
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precipitate was filtered, washed with ether, and crystallized from dichloromethane to give 100 mg 

(95%) of 4 as a purple powder; mp > 200 °C (dec); IR (KBr) ν 2094 cm"1 (NCS); NIR Xmax 1060 

nm; Ή NMR (CDC13/CD30D, 1:1) δ 0.95 (t, J = 7 Hz, 6H), 1.43 (sext, J = 7 Hz, 4H), 1.82 (quint, J 

= 7 Hz, 4H), 2.10 (m, 2H), 2.86 (m, 4H), 4.18 (t, J = 7 Hz, 4H), 6.66 (br d, J = 14 Hz, 2H), 7.09 (d, 

J = 8 Hz, 2H), 7.19 (d, J = 8 Hz, 2H), 7.29 (d, J = 8 Hz, 2H), 7. 56 (d, J = 8 Hz, 2H), 7.80 (t, J = 8 

Hz, 2H), 8.13 (d, J = 8 Hz, 2H), 8.22 (d, J = 8 Hz, 2H), 9.09 (br d, J = 14 Hz, 2H). 

3-(l',l',2'-Trimethyl-l'//-benz[e]indolium-3')propanesulfonate (6). Quatemization of 5 

with 1,3-propane sultone was conducted by using a general procedure;5 yield 94%; mp > 300 °C 

(dec); Ή NMR (DMSO-^)) δ 1.76 (s, 6H), 2.23 (quint, J = 7 Hz, 2H), 2.67 (t, J = 7 Hz, 2H), 2.94 

(s, 3H), 4.78 (t, J = 7 Hz, 2H), 7.72 (t, J = 8 Hz, 1H), 7.78 (t, J = 8 Hz, 1H), 8.21 (d, J = 8 Hz, 1H), 

8.23 (d, J = 9 Hz, 1H), 8.28 (d, J = 9 Hz, 1H), 8.35 (d, J = 8 Hz, 1H). 

Sodium 3-[2'-[4"-chloro-7"-[l,",l"'-dimethyl-3"'-(3""-sulfonatopropyl)-l"'i/-

benz[e7indol-3"'-ium-2,"-yl]-3",5"-(propane-l'"",3"'"-diyl)-2",4",6"-heptatrien-l"-

ylidene]-l',l'-dimethyl-l',2'-dihydro-3'H-benz[e]indol-3'-yl]propanesulfonate (8). A solution 

of 6 (370 mg, 1.0 mmol), 75 (720 mg, 2.0 mmol), and anhydrous sodium acetate (160 mg, 2.0 

mmol) in absolute ethanol (50 mL) was heated under reflux under a nitrogen atmosphere for 5 h. 

After cooling, the solution was treated with ether (200 mL), and the resulting precipitate was 

filtered and crystallized from methanol/ether (1:1) to give 0.8 g (85%) of 8; a green solid; mp > 220 

°C (dec); NIR Xmax 820 nm; Ή NMR jOMSO-^) δ 1.88 (m, 2Η), 1.95 (s, 12H), 2.09 (m, 4H), 2.63 

(m, 4H), 2.78 (m, 4H), 4.50 (m, 4H), 6.55 (br d, J = 14 Hz, 2H), 7.50 (t, J = 8 Hz, 2H), 7.64 (t, J = 8 

Hz, 2H), 7.85 (d, J = 9 Hz, 2H), 8.06 (t, J = 9 Hz, 4H), 8.27 (d, J = 8 Hz, 2H), 8.36 (br d, J = 14 Hz, 

2H). 

Sodium 3-[2'-[4"-[(4"'-Carboxyphenyl)thio]-7"-[l'",l'"-dimethyl-3'"-(3""-

sulfonatopropyI)-l'''/f-benz[e7indol-3'''-ium-2'''-yl]-3",5"-(propane-l''''',3',','-diyl)-

2'^4'^6"-heptatrien-l'-ylidene]-l',l'-dimethyl-l'^2'-dihydro-3'//-benz[e]indol-3'-

yl]propanesulfonate (9). A solution of 8 (430 mg, 0.45 mmol) and 4-mercaptobenzoic acid (230 

mg, 1.5 mmol) in anhydrous DMF (10 mL) was allowed to stand under a nitrogen atmosphere at 23 

°C for 8h and then was diluted slowly with ether (50 mL) to give 383 mg (90%) of a blue-green 

precipitate of 9; mp > 200 °C (dec); NIR λ ^ 837 nm; Ή NMR (DMSO-rf6) δ 1.70 (s, 12H), 1.97 (t, 

J = 6 Hz, 2H), 2.09 (quint, J = 7 Hz, 4H), 2.65 (t, J = 7 Hz, 4H), 2.87 (t, J = 6 Hz, 4H), 4.49 (t, J = 7 

Hz, 4H), 6.60 (br d, J = 14 Hz, 2H), 7.47 (d, J = 8 Hz, 2H), 7.49 (t, J = 8 Hz, 2H), 7.61 (t, J = 8 Hz, 

2H), 7.82 (d, J = 9 Hz, 2H), 7.92 (d, J = 8 Hz, 2H), 8.03 (d, J = 8 Hz, 2H), 8.05 (d, J = 9 Hz, 2H), 

8.20 (d, J = 8 Hz, 2H), 8.69 (br d, J = 14 Hz, 2H). 
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Sodium 3-[2'-[7"-[l'",l'"-dimethyl-3'"-(3""-suIfonatopropyl)-l"'H-benz[e7indol-

3"'-ium-2'"-yl]-3",5"-(propane-l""'^""'-diyl)-4"-[[4"""-

(succinimidoxycarbonyl)phenyl]thio]-2'^4'',6''-heptatrien-r-yIidene]-r,l'-dimethyl-l',2'-

dihydro-3'f/-benz[e]indol-3'-yl]propanesulfonate (10). A reaction of 9 (100 mg, 0.11 mmol) 

with disuccinimido carbonate (31 mg, 0.12 mmol) in DMF (5 mL) and then workup were conducted 

by using a general procedure;7 yield 90 mg (91%) of a blue-green solid; mp > 200 °C (dec); NIR 

Xmai 837 nm; Ή NMR (DMSO-<4) δ 1.71 (s, 12H), 1.97 (t, J = 6 Hz, 2H), 2.09 (t, J = 7 Hz, 4H), 

2.64 (t, J = 7 Hz, 4H), 2.87 (t, J = 6 Hz, 4H), 2.89 (s, 4H), 4.48 (t, J = 7 Hz, 4H), 6.59 (br d, J = 14 

Hz, 2H), 7.47 (d, J = 8 Hz, 2H), 7.49 (t, J = 8 Hz, 2H), 7.61 (t, J = 8 Hz, 2H), 7.82 (d, J = 9 Hz, 2H), 

7.92 (d, J = 8 Hz, 2H), 8.02 (d, J = 8 Hz, 2H), 8.04 (d, J = 9 Hz, 2H), 8.19 (d, J = 8 Hz, 2H), 8.69 (br 

d, J = 14 Hz, 2H). 
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